New Learning Composite Mathematics SK Gupta Anubhuti Gangal Class 7 Powers and Exponents Self Practice 4A Solution
(1) Complete the table. One has been dome for you.
Expression | Base | Exponent | Meaning | Value | |
(a) | 2^{8} | 2 | 8 | 2 x 2 x 2 x 2 x 2 x 2 x 2 x 2 | 256 |
(b) | (-12)^{3} | ||||
(c) | (-3/4)^{3} | ||||
(d) | (-5/7)^{3} |
(2) Write in exponential form.
(a) 15 x 15
(b) (-9) x (-9) x (-9)
(c) 29
(d) (-5/7) (-5/7) (-5/7) (-5/7)
(e) (-8) (-8) (-8)….10 times
(f) (2p) (2p) (2p)
(g) (-x). (-x). (-x). (-x)
(h) (-10) . (-10) a. a. a
(i) (-m). (-m) . (-m). n. n
(j) – 43
(3) Find the value of each expression.
(a) 5^{3}
(b) -5^{3}
(c) (-2/9)^{3}
(d) (-2)^{6}
(e) (-3)^{4}
(4) Write each expression as repeated multiplication. Then write the value of each expression.
(a) 10^{4}
(b) (-7/8)^{4}
(c) (1/10)^{2}
(d) (-12)^{3}.y^{4}
(5) Express the prime factorization of the following numbers in exponential form.
(a) 81
(b) 1600
(c) -32/243
(d) -343/1331
(6) Express:
(a) 625 to base (i) 5 (ii) 25
(b) -729 to base (i0 3 (ii) -9
SOLUTION Number 1, 2 &3:
(7) Evaluate:
(a) (-3)^{3} x (-1)^{9} x 10^{2}
(b) (-2/3)^{3} (-3/4)^{2} x (-1)^{8} x (-6)^{2}
(8) Evaluate each expression for the given value of the variables.
(a) a^{m} + b^{n} for a = -5, b = 11, m = 3 and n = 2
(b) 3x^{15} – (y + z)^{3} for x = -1, y = -7, z = -3
SOLUTION 6, 7 & 8: