# New Learning Composite Mathematics Class 7 SK Gupta Anubhuti Gangal Powers and Exponents Chapter 4B Solution

### New Learning Composite Mathematics SK Gupta Anubhuti Gangal Class 7 Powers and Exponents Self Practice 4B Solution

(1) Multiply and write the product as one power.

(a) 25 x 23

(b) 47 x 45

(c) 98 x 97

(d) 105 x 103 x 10

(e) (1/2)7 x (1/2)3

(f) (-7/9)11 x (-7/9)6

(g) (5/13)9 x (5/13)11

(h) (-4/15)8 x (-4/15)5 x (-4/15)9

(i) p7 x p8 x p9 x p6

(2) Divide and write the quotient as one power.

(a) 36 ÷ 34

(b) 711 ÷ 75

(c) (-11)7 ÷ (-11)4

(d) x10 ÷ x4

(e) (1/3)7 ÷ (1/3)5

(f) (-8/17)20 ÷ (-8/17)15

(g) (3/19)8 ÷ (3/19)

(h) (-23)7 ÷(-23)7

(i) p5 / p

(j) (-x)17 / (-x)5

SOLUTION 1 & 2:

(3) Simplify, leaving each answer in exponential form.

(a) (34)2

(b) (65)7

(c) (172)3

(d) [(7/3)2]5

(e) [(-7/8)6]5

(f) (m9)3

(g) (t4)4

(h) (n10)9

(4) Simplify:

(a) (xy)2

(b) (7a2)3

(c) (-2x5y2)7

(d) (-3p3q4)4

SOLUTION 3 & 4:

(5) Simplify:

(a) (83)2 ÷ 84

(b) (22)3 x 52

(c) (3a2)3 ÷ (-3a6)

(d) (-2x2y3)4 x (1/2 x4y7)4

(e) (195)0

(f) (50 – 70) x 350

(6) Find the value of x in each case.

(a) x6 = 64

(b) (-3)x -1 = -243

(c) (3/4)4 x (3/4)5 = (3/4)5x + 1

(d) 59 ÷ (5)3 – x = 510

(7) Simplify the following:

(a) (33)2 x 52 / 92 x 5

(b) 38 x a6 / 93 x a3

(c) (50 + 40 + 30) x 34

(8) If [3m2 ÷ (3m)2 ]m  = 1/81 then the value of m is

(a) -3

(b) -6

(c) -3

(d) 4

SOLUTION 5, 6, 7 & 8:

Updated: February 14, 2020 — 2:34 pm