$E x-25$

1. A cloth merchant sold $75 \frac{1}{2} \mathrm{~m}$ of cloth on a day. He sold $36 \frac{3}{4} \mathrm{~m}$ of cloth the next day.
He sold $\left(75 \frac{1}{2}+36 \frac{3}{4}\right)=\left(\frac{151}{2}+\frac{147}{4}\right)=\left(\frac{302+147}{4}\right)=\frac{449}{4}$ $=112 \frac{1}{4} \mathrm{~m}$ of cloth in all in those two days.
2. Four suitcases weigh $10 \frac{3}{4} \mathrm{~kg}, 12 \frac{1}{2} \mathrm{~kg}, 13 \frac{1}{5} \mathrm{~kg}$ and $14 \frac{1}{4} \mathrm{~kg}$ respectively.

A porter carries all the suitcases.
\therefore The total weight carried by the porter is $\left(10 \frac{3}{4}+12 \frac{1}{2}+13 \frac{1}{5}+14 \frac{1}{4}\right)$

$$
\begin{aligned}
& =\left(\frac{43}{4}+\frac{25}{2}+\frac{66}{5}+\frac{57}{4}\right)=\left(\frac{43+57+50}{4}+\frac{66}{5}\right)=\left(\frac{150}{4}+\frac{66}{5}\right) \\
& =\left(\frac{750+264}{20}\right)=\frac{1014^{501}}{-20}=50 \frac{7}{10} \mathrm{~kg}
\end{aligned}
$$

3. A rope is $5 \frac{2}{3} m=\frac{17}{3} m$ long.

It is cut into two pieces.
The length of one piece is $2 \frac{1}{4} \mathrm{~m}=\frac{9}{4} \mathrm{~m}$.
\therefore The length of the other piece is $\left(\frac{17}{3}-\frac{9}{4}\right)=\left(\frac{68-27}{12}\right)=\frac{41}{4}$

$$
=10 \frac{1}{4} \mathrm{~m}
$$

14. A milk man has 20 L of milk.

He sells $15 \frac{3}{5} l=\frac{78}{5} \mathrm{l}$ of milk.
$\left(20-\frac{78}{5}\right)=\left(\frac{100-78}{5}\right)=\frac{22}{5}=4 \frac{2}{5} l$ of milk is left to be sold.
5. The price of 1 kg of sugar is Rs $14 \frac{1}{2}=R_{s} \cdot \frac{29}{2}$.
\therefore The price of $3 \frac{1}{4}=\frac{13}{4} \mathrm{~kg}$ of sugar will be $\left(\frac{29}{2} \times \frac{13}{4}\right)$

$$
=\frac{377}{8}=\operatorname{Rs} \cdot 47 \frac{1}{8}
$$

6. $5 \frac{1}{9}=\frac{46}{9} L$ of petrol costs $₹ 92$.
\therefore The cost of 1 L of petrol is $\left(92 \div \frac{46}{9}\right)=\left(9^{2} 2 \times \frac{9}{46}\right)=\mp 18$
T. The product of two fractional numbers is $7 \frac{1}{3}=\frac{22}{3}$.

One of them is $1 \frac{5}{6}=\frac{11}{6}$.
\therefore The other number is $\left(\frac{22}{3} \div \frac{11}{6}\right)=\left(\frac{22^{2}}{3} \times \frac{6^{2}}{71}\right)=4$
8. A man sold $\frac{1}{2}$ of his land.

He gave $\frac{1}{2}$ of the remaining portion to his son and $\frac{1}{3}$ of the balance to his daughter.
$\therefore\left(\frac{1}{2}-\frac{1}{3}\right)=\left(\frac{3-2}{6}\right)=\frac{1}{6}$ of his land is left with him.
9. The length of a line segment $A B$ is $\frac{2}{3}$ of the length of the line segment $C D$.

$$
C D=4 \mathrm{~cm} \quad \therefore \quad A B=4 \times \frac{2}{3}=\frac{8}{3} \mathrm{~cm}
$$

The length of a line segment $E F$ is $\frac{3}{8}$ of the length of the line segment $A B$.

$$
A B=\frac{8}{3} \mathrm{~cm} \quad \therefore E F=\frac{1}{8} \times \frac{3^{1}}{8}=1 \mathrm{~cm}
$$

$\therefore \quad \frac{1}{4}$ of the length of $C D$ is equal to the length of $E F$.
10.

There are 800 students in a school.
$\frac{1}{10}$ of the students were absent on a day.
$\therefore\left(800 \times \frac{1}{10}\right)=80$ students were absent.
$\therefore(800-80)=720$ students were present that day.
$\therefore \frac{720}{800}=\frac{9}{10}$ of the students ware present that day.
11. There are 572 examines.
$\frac{3}{11}$ of the total number of examinees appears in part 1.
$\therefore\left(572 \times \frac{3}{11}\right)=156$ examinees appear in part 1.
$\frac{3}{13}$ appears in part 2.
$\therefore\left(572 \times \frac{3}{13}\right)=132$ examinees appear in part 2.
The rest appear in both the parts.
$\therefore\{572-(156+132)\}=284$ examinees appear in both plots.
12. A man has Rs. 480 in first bundle of notes and Rs. 300 in other bundle.

He gives $\frac{1}{4}$ of first bundle and $\frac{1}{3}$ of other bundle to Bunty.
\therefore Bunny received total $=\left\{\left(\frac{120}{480} \times \frac{1}{4}\right)+\left(300 \times \frac{1}{3}\right)\right\}$

$$
=\{120+100\}=R s .220
$$

He gives $\frac{1}{3}$ of first bundle and $\frac{1}{5}$ of other bundle to Binny.
\therefore Bini received total $=\left\{\left(460 \times \frac{1}{3}\right)+\left(300 \times \frac{1}{5}\right)\right\}$

$$
=\{160+60\}=R s \cdot 220
$$

\therefore Bunt and Binny; both received same amount of money.
13. Kanchan spends $\frac{1}{2}$ of her money in one shop. She spends $\frac{1}{3}$ of remaining on rickshaw fare.

\therefore she had in the begixnixy =
\therefore At the end, she has $\left(\frac{1}{2}-\frac{1}{3}\right)=\frac{3-2}{6}=\frac{1}{6}$
$\therefore \frac{1}{6}=20$, or $1=20 \times 6=120$
\therefore She had in the beginning RS. 120.
15. The distance between two stations is 25 km .

Atrain starts from one station and goes 15 km towards the other station.
$\therefore(25-15)=10 \mathrm{~km}$ between the two stations remains to be covered.
$\therefore{ }^{2} \frac{20}{5}=\frac{2}{5}$ of the distance between the two stations 52 remains to be covered.
14.

A boy reads $\frac{1}{4}$ of a book on the first day and on second day he reads $\frac{1}{3}$ of the remaining portion.
\therefore The remaining portion is $\left(1-\frac{1}{4}\right)=\frac{3}{4}$
\therefore On second dy day he reads $\left(\frac{1}{4} \times \frac{1}{3}\right)=\frac{1}{4} \theta$
\therefore In the two days, the boy reads $\left\{1-\left(\frac{1}{4}+\frac{1}{4}\right)\right\}=\left\{1-\frac{2}{4}\right\}$ $=\frac{2}{4}=\frac{1}{2}$ of a book.

If 100 pages are left to be read, then $(100 \times 2)=200$ pages are there in the book.
16. A train travels $45 \frac{1}{3} \mathrm{~km}$ every hour for the first $3 \frac{1}{2}$ hours after leaving a station.
\therefore The first $3 \frac{1}{2}$ hours, the train travels $\left(\frac{136}{3} \times \frac{7}{2}\right) \mathrm{km}$

$$
=\frac{476}{3} \mathrm{~km}
$$

It travels $50 \frac{1}{2} \mathrm{~km}$ every hour for the next $2 \frac{1}{2}$ hours.
\therefore Next $2 \frac{1}{2}$ hours, the train travels $\left(\frac{101}{2} \times \frac{5}{2}\right) \mathrm{km}$

$$
=\frac{505}{4} \mathrm{~km}
$$

\therefore During the six hours, the train travels $\left(\frac{476}{3}+\frac{505}{4}\right) \mathrm{km}$

$$
\begin{aligned}
& =\left(\frac{1904+1515}{12}\right) \mathrm{km} \\
& =\frac{3419}{12}=284 \frac{11}{12} \mathrm{~km}
\end{aligned}
$$

11. In a colony, Two-thirds of the vehicles are scooters, three-fourths of the remaining are cycles.
$\therefore\left(1-\frac{2}{3}\right)=\frac{1}{3}$ is the remaining.
$\therefore\left(\frac{1}{3} \times \frac{1}{4}\right)=\frac{1}{4}$ are cycles
$\therefore\left\{1-\left(\frac{2}{3}+\frac{1}{4}\right)\right\}=\left\{1-\frac{5}{12}\right\}=\frac{7}{12}$ of the vehicles are car.
12. If the total number of vehicles is 4836 . then there in the colony, $\left(4836 \times \frac{1}{12}\right)=2821$ are cars.
13. A smaller vessel can contain $\frac{2}{25}$ of the amount of oil contained in the larger vessel.

Oil is taken out from the larger vessel ten times by filling the smaller vessel.
$\therefore\left\{1-\left(\frac{2}{25} \times 10^{2}\right)\right\}=\left\{1-\frac{4}{5}\right\}=\left\{\frac{5-4}{5}\right\}=\frac{1}{5}$ of oil is left in the larger vessel.

