1. The factors of 9 are $3,9($ from $3,4,5,6,7,8,9)$
2. The factors of $36=1,2,3,4,6,9,12$ The factors of $24=1,2,3,4,6,8,12 \ldots$
\therefore The common factors of 36 and 24 are $1,2,3,4,6,12$
3. (a) The smallest multiple of $5=5$
(b) The first three multiples of $6=6,12,18$
(c) The multiple of 11 which is greater than 50 but less than 60 is $=55 \quad(11 \times 5=55)$
4.' (a) The first ten prime numbers are - $1,2,3,5,7,11,13$,

$$
17,19,23
$$

(b) The first ten composite numbers are - 4, 6, 8, 9, 10, $12,14,15,16,18$
(c) The first ten odd-composite numbers are- $9,15,21$,

$$
25,27,33,35,39,45,49
$$

5. (d) J and 14;

Factors of $7=\frac{1}{2}, 7 / 2$
Factors of $14=\frac{1}{2}, ~ T /, 14$
Tan
$7,14=7 \times 1$
$18,17=1$
$36,25=1$
$3540 n d 21=1 \times 7$
5. (b) 18 and 17 are coprime numbers.
(c) 36 and 25 are coprime numbers.
6. (a) $27,138,3036,56311$

27 is odd number, so it is in ot divisible by 2
138 is even number, so it is divisible by 2 3036 is even number, so it is divisible by 2 56311 is odd number, so it is not divisible by 2

60(a) $27,138,3036,56311 \quad 2$
Here, only 138 , and 3036 are even numbers. So, these two numbers are divisible by 2
(8)
(b) $75,396,1112,30312,3$

Here, $75(T+5=12), 396(3+9+6=18), 30312(3+0+3+1+2=9)$ are divisible by 3 because their sums are divisible by 3 .
(c) $40,712,5422,33308,4$

Here, 40, 712 and 33308 are divisible by 4 because Their last two digits are divisible by 4.
(d) $95,556,2360,131345$

Here, 95 and 2360 are divisible by 5 because they have 5 and 0 in their ones positions respectively.
(e) $85,840,9005,1876010$

Here, 840 and 18.760 are divis 1 le by 10 because they have 0 in their ones positions.
(f). $96,726,9824,76504.8$

Here, $96,9824,7654$ are divisible by both 2 and 4 . So these are divisible by 8 .
(g) $56,108,2372,156069$

Here, 108 and 15606 are divisible by 9 because their sums of digits are divisible by 9 .

$$
[108(1+0+8=9), 15606(1+5+6+0+6=18)]
$$

(h) $97,506,2354,83908,11$

Here, $506\left[\begin{array}{c}{[(+6)-0.11]} \\ \end{array}\right.$
are divisible by 11. because, the difference between the sum of the digits in odd places and the sum of the digits in even places of each number are either 0 or a multiple of 11 .
7. (a) 36 is divisible by 6 because it is divisible by both 2 and 3 .
(b) 333 is not divisible by 6 because it is divisible by both. 2 and 3. [333 is not divisible by 2]
(c) 4326 is divisible by 6 because it is divisible by both 2 and 3 .
(d) .98762 is not divisible by 6 because it is not divisible by both 2 and 3 . [98762 is not divisible by 3$]$
8. (a) 129 is not divisible by 12 because it is not divisible by both 3 and 4 . [129 is not divisible by 4]
(b) 4896 is divisible by 12 because it is divisible by both 3 and 4 .
(c) 79968 is divisible by 12 because it is divisible by both 3 and 4 .
(d) 123452 is not divisible by 12 because it is not divisible by both 3 and 4. [123452 is not divisible by 3]
9. (a) 390 is divisible by 15 because it is divisible by both 3 and 5 .
(b) is not divisible by 15 because it is not divisible by both 3 and 5 . [7825 is not divisible by 3]
(c) 90875 is not divisible by 15 because it is not divisible by both 3 and 5 . [90875 is not divisible by 3]
(d) 123450 is divisible by 15 because it is divisible by both 3 and 5 .
10. (d) 9026 is divisible by 2 but not by 4 [because the last two digits is not divisible by 4 .]
51. 1540

The last two digits is divisible by 4, so 1540 is divisible by 4 .
The given number has 0 in its ones place, so it is divisible by 5 .
The difference of the sum of digits in even places and the sum of digits in odd places $[(1+4)-(5+0)=0]$ is 0 . So it is divisible by 11 .
12.

Column 1
Column 2 (number)
(divisible by)
(a) 11
(b)
(c)

13
(a) 21
(b) 31

2
(c) 3990
(d) 1881
(c) 1234 \qquad 2
14.
(a) $256(4 / 8)$
(b) 818
(c) -64
(d)

$$
\begin{aligned}
& 7 \\
& (2 / 4 / 6 / 8)
\end{aligned}
$$

$$
(2 / 4 / 6 / 8)
$$

$$
(2 / 4 / 6 / 8)
$$

