Case Study - 4

Properties of progressive wave

The displacement from the equilibrium position may be denoted by y. A sinusoidal travelling wave is then described by: $y(x, t) = a \sin(kx \cdot \omega t + \phi)$. The term ϕ in the argument of sine function. This equation represents a sinusoidal (harmonic) wave travelling along the positive direction of the x-axis. On the other hand, a function $y(x, t) = a \sin(kx + \omega t + \phi)$. Represents a wave travelling in the negative direction of x-axis.

Where y(x,t) : displacement as a function of position x and time t

a: amplitude of a wave
ω: angular frequency of the wave
k: angular wave number *kx*-ω*t*+φ: initial phase angle

Amplitude (a) and phase (): Amplitude represents the maximum displacement of the constituents of the medium from their equilibrium position and the quantity ($kx - \omega t + \phi$) appearing as the argument of the sine function is called the phase of the wave.

Wavelength (λ) and Angular Wave Number (k): The minimum distance between two points having the same phase is called the wavelength of the wave, usually denoted by λ .

 $\lambda = \frac{2\pi}{k}$

k is the angular wave number or propagation constant; its SI unit is radian per meter or rad m^{-1} .

- 1. The displacement from the equilibrium position travelling in the negative direction of x-axis Is represented by
 - a. $y(x, t) = a\sin(kx \omega t + \phi)$.
 - b. $y(x, t) = a\sin(kx+\omega t + \phi)$.
 - c. None of these

2. SI unit of angular wave number is

- a. rad m^{-1} .
- b. rad-m
- c. Hertz

- d. None of the above
- 3. Define wavelength of progressive wave
- 4. Define angular wave number
- 5. Define amplitude and phase

Answer key- 4

- 1. B
- 2. A
- 3. The minimum distance between two points having the same phase is called the wavelength of the wave, usually denoted by λ .

$$\lambda = \frac{2\pi}{k}$$
.

4. Angular wave number is defined as number of wave cycles per unit distance. Usually denoted by k and given by

$$\kappa = \frac{2\pi}{\lambda}$$

5. Amplitude represents the maximum displacement of the constituents of the medium from their equilibrium position and the quantity $(kx - \omega t + \phi)$ appearing as the argument of the sine function is called the phase of the wave.

Case Study - 5

Speed of traveling wave is the distance traveled by a given point on the wave in a given interval of time. Speed is determined by properties of medium like density young's modulus and shear modulus etc. and given by $V = \frac{\lambda}{T}$. Speed of a Transverse Wave on Stretched String is given by $V = \sqrt{\frac{T}{\mu}}$. Where T is tension in string and μ is mass per unit length or linear density of string. The speed of longitudinal waves in a solid bar is given by $V = \sqrt{\frac{Y}{\rho}}$. Where Y is young's modulus and ρ is mass per unit volume.

1. On increasing the tension in a string, the speed of the wave

- a. Increases
- b. Decreases
- c. Remains constant
- d. None of these
- 2. Speed of sound in different medium is different. True or false?
 - a. True
 - b. False
- 3. Define speed of travelling wave.
- 4. Give formula for speed of transverse waves. On which fact does it depend?
- 5. Give formula for speed of longitudinal waves. On which fact does it depend?

Answer key - 5

- 1. A
- 2. A
- 3. . Speed of traveling wave is the distance traveled by a given point on the wave in a given interval of time. Speed is determined by properties of

medium like density young's modulus and shear modulus etc. and given by $V = \frac{\lambda}{\tau}$.

4. Speed of a Transverse Wave on Stretched String is given by $V=\sqrt{\frac{T}{\mu}}$. Where T is tension in string and μ is mass per unit length or linear density of string. Speed of transverse wave is depends on

a. Tension in string

b. Linear mass density(mass per unit length)

- 5. The speed of longitudinal waves in a solid bar is given by $V = \sqrt{\frac{Y}{\rho}}$. Where Y is young's modulus and ρ is mass per unit volume. The speed of longitudinal waves is depends upon
 - a. Young's modulus
 - b. Mass per unit volume