1) Scalar product obeys commutative law of multiplication.

i. e.
$$\vec{P} . \vec{Q} = \vec{Q} . \vec{P}$$

2) The scalar product obeys the distributive law of multiplication.

i. e. \vec{P} . $(\vec{Q} + \vec{R}) = \vec{P}$. $\vec{Q} + \vec{P}$. \vec{R}

3) If $\theta = 0$. i.e., if the two nonzero vectors are parallel to each other, their scalar product is equal to magnitude of vectors only.

$$\vec{P}.\vec{Q}=PQ$$

Then from this we can conclude that,

$$\hat{\imath}\times\hat{\imath}=1$$
 , $\hat{\jmath}\times\hat{\jmath}=1$, $\hat{k}\times\hat{k}=1$

4) If $\theta = 180^{\circ}$, i.e., if the two nonzero vectors are anti-parallel,

$$\vec{P}.\vec{Q} = -PQ$$

5) If $\theta = 90^\circ$, i.e., if the two nonzero vectors are perpendicular to each other, the magnitude of their scalar product is zero

i. e.
$$\vec{P}$$
. $\vec{Q} = 0$

Then from this we can conclude that,

$$\hat{\imath}\times\hat{\jmath}=0$$
 , $\hat{\jmath}\times\hat{k}=0$, $\,\hat{k}\times\hat{\imath}=0$

6) If $\vec{P} = \vec{Q}$, then $\vec{P} \cdot \vec{Q} = P^2 = Q^2$

7) If the vectors \vec{P} and \vec{Q} are given in terms of its component vectors as,

 $\vec{P} = P_x \hat{i} + P_y \hat{j} + P_z \hat{k}$ and $\vec{Q} = Q_x \hat{i} + Q_y \hat{j} + Q_z \hat{k}$ then the magnitude of vector products is given as,

$$\vec{P}.\vec{Q} = (P_xQ_x + P_yQ_y + P_zQ_z)$$

Let's learn some numerical on vector product of vectors...!

1) Force applied on object $\vec{F} = 3\hat{i} + 3\hat{j} + 5\hat{k}$ N displaced it through

 $\vec{s} = \hat{i} + 2\hat{j} + 2\hat{k}$. Find the work done.

Solution: Work done, $=\vec{F}.\vec{s}$

: $W = (3\hat{i} + 3\hat{j} + 5\hat{k}).(\hat{i} + 2\hat{j} + 2\hat{k})$

$$\therefore W = 3 + 6 + 10$$

$$\therefore$$
 W = 19 J