1) Scalar product obeys commutative law of multiplication.

$$
\text { i. e. } \overrightarrow{\mathrm{P}} \cdot \overrightarrow{\mathrm{Q}}=\overrightarrow{\mathrm{Q}} \cdot \overrightarrow{\mathrm{P}}
$$

2) The scalar product obeys the distributive law of multiplication.
i. e. $\vec{P} .(\vec{Q}+\vec{R})=\vec{P} \cdot \vec{Q}+\vec{P} \cdot \vec{R}$
3) If $\theta=0$. i.e., if the two nonzero vectors are parallel to each other, their scalar product is equal to magnitude of vectors only.
$\vec{P} \cdot \overrightarrow{\mathrm{Q}}=\mathrm{P} \mathrm{Q}$
Then from this we can conclude that,
$\hat{\imath} \times \hat{\imath}=1, \hat{\jmath} \times \hat{\jmath}=1, \hat{k} \times \hat{k}=1$
4) If $\theta=180^{\circ}$, i.e., if the two nonzero vectors are anti-parallel, $\vec{P} \cdot \vec{Q}=-P Q$
5) If $\theta=90^{\circ}$, i.e., if the two nonzero vectors are perpendicular to each other, the magnitude of their scalar product is zero
i. e. $\vec{P} \cdot \vec{Q}=0$

Then from this we can conclude that,
$\hat{\imath} \times \hat{\jmath}=0, \hat{\jmath} \times \hat{\mathrm{k}}=0, \hat{\mathrm{k}} \times \hat{\mathrm{\imath}}=0$
6) If $\vec{P}=\vec{Q}$, then $\vec{P} \cdot \vec{Q}=P^{2}=Q^{2}$
7) If the vectors \vec{P} and \vec{Q} are given in terms of its component vectors as, $\vec{P}=P_{x} \hat{\imath}+P_{y} \hat{\jmath}+P_{z} \hat{k}$ and $\vec{Q}=Q_{x} \hat{\imath}+Q_{y} \hat{\jmath}+Q_{z} \hat{k}$ then the magnitude of vector products is given as,

$$
\vec{P} \cdot \vec{Q}=\left(P_{x} Q_{x}+P_{y} Q_{y}+P_{z} Q_{z}\right)
$$

Let's learn some numerical on vector product of vectors...!

1) Force applied on object $\overrightarrow{\mathrm{F}}=3 \hat{\imath}+3 \hat{\jmath}+5 \hat{k} N$ displaced it through

$$
\overrightarrow{\mathrm{s}}=\hat{\imath}+2 \hat{\jmath}+2 \hat{\mathrm{k}} . \text { Find the work done. }
$$

Solution:Work done, $=\vec{F}$. \vec{s}
$\therefore \mathrm{W}=(3 \hat{\imath}+3 \hat{\jmath}+5 \hat{k}) \cdot(\hat{\imath}+2 \hat{\jmath}+2 \hat{\mathrm{k}})$
$\therefore \mathrm{W}=3+6+10$
$\therefore \mathrm{W}=19 \mathrm{~J}$

