1) Vector product does not obey commutative law of multiplication.
i. e. $\vec{P} \times \vec{Q} \neq \vec{Q} \times \vec{P}$

However, $|\overrightarrow{\mathrm{P}} \times \overrightarrow{\mathrm{Q}}|=|\overrightarrow{\mathrm{Q}} \times \overrightarrow{\mathrm{P}}|$
2) The vector product obeys the distributive law of multiplication.
i. e. $\vec{P} \times(\vec{Q}+\vec{R})=\vec{P} \times \vec{Q}+\vec{P} \times \vec{R}$

3) If $\theta=0$. i.e., if the two nonzero vectors are parallel to each other, their vector product is a zero vector,
$\overrightarrow{\mathrm{P}} \times \overrightarrow{\mathrm{Q}}=\mathrm{P} \mathrm{Q} \sin 0=0$
4) If $\theta=180^{\circ}$, i.e., if the two nonzero vectors are anti-parallel, their vector product is a zero vector,
$\overrightarrow{\mathrm{P}} \times \overrightarrow{\mathrm{Q}}=\mathrm{P} \mathrm{Q} \sin 180^{\circ}=0$
5) If $\theta=90^{\circ}$, i.e., if the two nonzero vectors are perpendicular to each other, the magnitude of their vector product is equal to the product of magnitudes of the two vectors.
i. e. $\vec{P} \times \vec{Q}=P Q$

Then from this we can conclude that,
$\hat{\imath} \times \hat{\jmath}=\hat{\mathrm{k}}, \hat{\jmath} \times \hat{\mathrm{k}}=\hat{\imath}, \hat{\mathrm{k}} \times \hat{\imath}=\hat{\jmath}$
6) If $\vec{P}=\vec{Q}$, then $\vec{P} \times \vec{Q}=0$

Then from this we can conclude that,
$\hat{\imath} \times \hat{\imath}=0, \hat{\jmath} \times \hat{\jmath}=0, \hat{k} \times \hat{k}=0$
7) If the vectors \vec{P} and \vec{Q} are given in terms of its component vectors as,
$\vec{P}=P_{x} \hat{\imath}+P_{y} \hat{\jmath}+P_{z} \hat{k} \quad$ and $\quad \vec{Q}=Q_{x} \hat{\imath}+Q_{y} \hat{\jmath}+Q_{z} \hat{k} \quad$ then the magnitude of vector products is given as,

$$
\vec{P} \times \vec{Q}=\left|\begin{array}{ccc}
\hat{i} & \hat{\jmath} & k \\
\mathrm{P}_{\mathrm{x}} & \mathrm{P}_{\mathrm{y}} & \mathrm{P}_{\mathrm{z}} \\
\mathrm{Q}_{\mathrm{x}} & \mathrm{Q}_{\mathrm{y}} & \mathrm{Q}_{\mathrm{z}}
\end{array}\right|
$$

8) The area of parallelogram having adjacent sides given by vectors $\vec{P} \& \vec{Q}$ is then written as, Area of parallelogram $=|\vec{P} \times \vec{Q}|$
