Cubes and Cube Roots

Exercise 7.1

(1) Which of the following number are not perfect cubes?

(i) 216

Ans: Here, we find cube root of given number.

2	216
2	108
2	54
3	27
3	9
3	3
	1

By prime factorization

 $216 = 2 \times 2 \times 2 \times 2 \times 3 \times 3 \times 3$

We make group of 3 factor.

 $216 = 2^3 \times 3^3$

 $=(2 \times 3)^3$

 $= 6^3$ which is perfect cube.

216 is a perfect cube of 6.

(ii) 128

Ans: Here, we find cube root of given number.

2	128
2	64
2	32
2	16
2	8
2	4
	2

 $128 = \underline{2 x 2 x 2} x \underline{2} x \underline{2 x 2 x 2} x 2$

We make group of 3 factor.

In above factorization one triplet group of 2 is not form.

128 is not a perfect cube.

(iii) 1000

ANS:

2	1000
2	500
2	250
5	125
5	25
5	5
Т	1

We make group of 3 factor.

 $1000 = 5 \times 5 \times 5 \times 2 \times 2 \times 2$

We make group of 3 factor.

 $1000 = 2^3 x 5^3$

 $=(5 \times 2)^3$

 $= 10^3$ which is a perfect cube

1000 is a perfect cube of 10.

(iv) 100

ANS:

2	100
2	50
5	25
5	5
	1

By prime factorization

 $100 = 5 \ge 5 \ge 2 \ge 2$

Here each factor repeated only twice. We required 3 times.

100 is not a perfect cube.

(v) 46656

-

ANS:

2	46656
2	23328
2	11664
2	5832
2	2916
2	1458
3	729
3	243
3	81
3	27
3	9
	3

By prime factorization

We make group of 3 factor.

Here each factor appear 3 time

 $46656 = 3^{3} \times 3^{3} \times 4^{3}$ = (3 x 3 x 4)³ = (36)³ which is a perfect cube.

46656 is a perfect cube of 36.

(2) Find the smallest number by which each of the following number must be multiplied to obtain a perfect cube.

ANS:

By using smallest multiple method,

 $243 = 3 \times 3 \times 3 \times 3 \times 3$

Here, the prime factor 3 does not appear in a group of three.

For getting a perfect cube, we multiply by one more 3.

 $243 \text{ x } 3 = \underline{3 \text{ x } 3 \text{ x } 3} \text{ x } \underline{3 \text{ x } 3 \text{ x } 3}$

= 729 which is a perfect cube.

The smallest natural number by which 243 should be multiplied to make a perfect cube is 3.

(ii) 256

ANS:

2	256
2	128
2	64
2	32
2	16
2	8
2	4
2	2
	1

Here,

 $256 = \underline{2 \times 2 \times 2} \times \underline{2 \times 2 \times 2} \times 2 \times 2 \times 2$

The prime factor 2 does not appear in a group of there.

For getting a perfect cube, we multiply by one more 2.

= 512 which is a perfect cube.

The smallest natural number by which 256 should be multiplied to make perfect cube is 2.

(iii) 72

ANS:

2	72
2	36
2	18
3	9
3	3
	1

 $72 = 2 \mathbf{x} \mathbf{2} \mathbf{x} \mathbf{2} \mathbf{x} \mathbf{3} \mathbf{x} \mathbf{3}$

Here,

The prime factor 3 does not appear in a group of three.

For getting a perfect cube, we multiply by one more 3.

= 216 which is a perfect cube.

The smallest natural number by which 72 should be multiplied to make a perfect cube is 3.

(iv) 675

ANS:

5	675
5	135
3	27
3	9
3	3

 $675 = 3 \times 3 \times 3 \times 5 \times 5$

Here,

The prime factor 5 does not appear in a group of three.

For getting a perfect cube, we multiply by one more 5.

 $675 \ge 5 = 3 \ge 3 \ge 3 \ge 5 \ge 5 \ge 5$

= 3375 which is a perfect cube.

The smallest natural number by which 675 should be multiplied to make a perfect cube is 5.

(v) 100 ANS:

2	100
2	50
5	25
5	5
	1

 $100 = 5 \ge 5 \ge 2 \ge 2$

Here both the prime factor does not form a group of three.

For getting a perfect cube, we multiply by 5 and 2

Then, 100 x 5 x 2 = 5 x 5 x 5 x 5 x 2 x 2 x 2

= 1000 which is a perfect cube.

The smallest natural number by which 100 should be multiplied to make a perfect cube is 5 x 2

(3) Find the smallest number by which each of the following number must be divided to obtain a perfect cube.

(i) 81

ANS:

 $81 = 3 \times 3 \times 3 \times 3 \times 3$

Factor 3 does not form a group of three.

If we divide 81 by 3, then the prime factorization of the quotient will not contain 3.

$$81 \div 3 = 3 \times 3 \times 3$$

 $= 27 = 3^3$ is perfect cube.

The smallest number by which 81 should be divided to make it perfect cube is 3.

1	100
(11)	178
(11)	120

ANS:

2	128
2	64
2	32
2	16
2	8
2	4
2	2
	1

 $128 = 2 \times 2$

Factor 2 does not form a group of three,

if we divide 128 by 2, then the prime factorization of the quotients will not contain 2.

 $128 \div 2 = 2 x 2 x 2 x 2 x 2 x 2 x 2$

 $= 64 = 4^3$ is perfect cube.

The smallest number by which 128 should be divided to make it perfect cube is 2.

(iii) 135

ANS:

5	135
3	27
3	9
3	3

 $135 = 3 \times 3 \times 3 \times 5$

Factor 5 does not form a group of three

If we divide 135 by 5, then the prime factorization of the quotient will not contain 5.

 $135 \div 5 = 3 \times 3 \times 3$ = 27 = 3³ is perfect cube.

The smallest number by which 135 should be divided to make it perfect cube is 5.

(iv) 192

ANS:

2	192
2	96
2	48
2	24
2	12
2	6
3	3
	1

192 = 2 x 2 x 2 x 2 x 2 x 2 x 3

Factor 3 does not form a group of there

If we divide 192 by 3 then the prime factorization of the quotients will not contain 3.

 $192 \div 3 = \underline{2 \times 2 \times 2} \times \underline{2 \times 2 \times 2}$

 $= 64 = 4^3$ is perfect cube.

The smallest number by which 192 should be divided to make it perfect cube is 3.

(v) 704

ANS:

2	704
2	352
2	176
2	88
2	44
2	22
	11

 $704 = 2 \times 2 \times 2 \times 2 \times 2 \times 2 \times 11$

Factor 11 does not form a group of three

If we divide 704 by 11 then the prime factorization of the quotient will not contain 11.

 $704 \div 11 = \underline{2 \times 2 \times 2} \times \underline{2 \times 2 \times 2}$

 $= 64 = 4^3$ is perfect cube.

The smallest number by which 704 should be divided to make it perfect cube is 11.

(4) Parikshit makes a cuboid of plasticine of sides 5cm, 2cm, 5cm, how many such cuboids will he need to form a cube?

ANS:

Given that,

Parikshit have plasticine of sides 5cm, 2cm and 5cm

We know,

Number of cuboids required = Volume of cube / Volume of cuboid

Now, Volume of cuboid = length x breadth x height

Volume of cuboid = $5 \times 5 \times 2 \text{ cm}^3$

To make the volume of cuboid as a cube number we need to multiply it by $(5 \times 2 \times 2)$

Number of cuboids required = $5^3 \times 2^3 / 5^2 \times 2$

Number of cuboids required = 20

Exercise 1.2

(1) Find the cube root of each of the following numbers by prime factories method.

(i) 64

ANS:

By prime factor method,

2	64
2	32
2	16
2	8
2	4
2	2
	1

 $64 = \underline{2 x 2 x 2} x \underline{2 x 2 x 2}$

We make group of 3 factor.

 $= 2^3 \times 2^3$

 $= (2 \times 2)^3$

The cube root of 64 is 4

(ii) 512

ANS:

By prime factor method

2	512
2	256
2	128
2	64
2	32
2	16
2	8
2	4
2	2

 $512 = \underline{2 x 2 x 2} x \underline{2 x 2 x 2} x \underline{2 x 2 x 2} x \underline{2 x 2 x 2}$

We make group of 3 factor.

 $= 2^3 \times 4^3$ = (2 x 2 x 2)³

The cube root of 512 is 8.

(iii) 10648

ANS:

By prime factor method

2	10648
2	5324
2	2662
11	1331
11	121
11	11
86	1

We make group of 3 factor.

 $10648 = \underline{2 \times 2 \times 2} \times \underline{11 \times 11 \times 11}$ $= 2^{3} \times 11^{3}$ $= (2 \times 11)^{3}$

The cube root of 10648 is 22

(iv) 27000

ANS:

By prime factor method,

3	27000
3	9000
3	3000
10	1000
10	100
10	10
	1

We make group of 3 factor.

 $27000 = 3 \times 3 \times 3 \times 10 \times 10 \times 10}$ = 3³ x 10³ = (3 x 10)³ The cube root of 27000 is 30.

(v) 15625

ANS:

By prime factor method,

5	15625
5	3125
5	625
5	125
5	25
5	5
	1

 $15625 = \underline{5 \times 5 \times 5} \times \underline{5 \times 5 \times 5}$ $= 5^{3} \times 5^{3}$ $= (5 \times 5)3$

The cube root of 15625 is 25.

(vi) 13824

ANS:

By prime factor method

2	13824
2	6912
2	3456
2	1728
2	864
2	432
2	216
2	108
2	54
3	27
3	9
3	3
	1

The cube root of 13824 is 24.

(vii) 110592

ANS:

By prime factorization method,

2	110592
2	55296
2	27648

2	13824
2	6912
2	3456
2	1728
2	864
2	432
2	216
2	108
2	54
3	27
3	9
3	3
	1

 $110592 = \underline{2 \times 2 \times 2} \times \underline{3 \times 3 \times 3}$ = $2^{3} \times 2^{3} \times 2^{3} \times 2^{3} \times 3^{3}$ = $(2 \times 2 \times 2 \times 2 \times 2 \times 3)^{3}$

The cube root of 110592 is 48.

(viii) 46656

ANS:

By prime factorization method

2	46656
2	23328
2	11664
2	5832
2	2916
2	1458
3	729
3	243
3	81
3	27
3	9
3	3
	1

 $46656 = \underline{2 \times 2 \times 2} \times \underline{2 \times 2 \times 2 \times 3 \times 3 \times 3} \times \underline{3 \times 3 \times 3}$ $= 2^{3} \times 2^{3} \times 3^{3} \times 3^{3}$ $= (2 \times 2 \times 3 \times 3)^{3}$

The cube root of 46656 is 36.

(ix) 175616

ANS:

By prime factorization method

2	175616
2	87808
2	43904
2	21952
2	10976
2	5488
2	2744
2	1372
2	686
7	343
7	49
7	7
	1

 $175616 = \underline{2 \times 2 \times 2} \times \underline{7 \times 7 \times 7}$ $175616 = \underline{2^3 \times 2^3 \times 2^3 \times 7^3}$ $= (2 \times 2 \times 2 \times 7)^3$

The cube root of 175616 is 56.

(x) 91125

ANS:

By prime factorization method,

5	91125
5	18225
5	3645
3	729
3	243
3	81
3	27
3	9
3	3

The cube root of 91125 is 45.

(2) State true or false

(i) Cube of any odd number is even.

ANS:False.

(ii) A perfect cube does not end with two zero.ANS:True.

(iii) If square of a number end with 5, then its cube end with 25. ANS:False.

(iv) There is no perfect cube which ends with 8. ANS:False. (v) The cube of a two digit number may be three digit numbers. Answer: False.

(vi) The cube of a two digit number may have seven or more digits. ANS:False.

(vii) The cube of a single digit number may be a single digit number. ANS:True.