Cubes and Cube Roots

Exercise 7.1

(1) Which of the following number are not perfect cubes?
(i) 216

Ans: Here, we find cube root of given number.

By prime factorization
$216=\underline{2 \times 2 \times 2 \times 3 \times 3 \times 3}$
We make group of 3 factor.
$216=2^{3} \times 3^{3}$
$=(2 \times 3)^{3}$
$=6^{3}$ which is perfect cube.
216 is a perfect cube of 6 .
(ii) 128

Ans: Here, we find cube root of given number.

2	128
2	64
2	32
2	16
2	8
2	4
	2

$128=\underline{2 \times 2 \times 2 \times \underline{2 \times 2 \times 2} \times 2}$
We make group of 3 factor.
In above factorization one triplet group of 2 is not form.
128 is not a perfect cube.
(iii) 1000

ANS:

2	1000
2	500
2	250
5	125
5	25
5	5
	1

We make group of 3 factor.
$1000=\underline{5 \times 5 \times 5 \times 2 \times 2 \times 2}$
We make group of 3 factor.
$1000=2^{3} \times 5^{3}$
$=(5 \times 2)^{3}$
$=10^{3}$ which is a perfect cube
1000 is a perfect cube of 10 .
(iv) 100

ANS:

By prime factorization
$100=5 \times 5 \times 2 \times 2$
Here each factor repeated only twice. We required 3 times.

100 is not a perfect cube.

(v) 46656

ANS:

2	46656
2	23328
2	11664
2	5832
2	2916
2	1458
3	729
3	243
3	81
3	27
3	9
	3

By prime factorization
We make group of 3 factor.
$46656=\underline{3 \times 3 \times 3 \times \underline{3 \times 3 \times 3} \times \underline{4 \times 4 \times 4}}$
Here each factor appear 3 time
$46656=3^{3} \times 3^{3} \times 4^{3}$
$=(3 \times 3 \times 4)^{3}$
$=(36)^{3}$ which is a perfect cube .
46656 is a perfect cube of 36 .
(2) Find the smallest number by which each of the following number must be multiplied to obtain a perfect cube.

ANS:
By using smallest multiple method,

$243=\underline{\mathbf{3} \times 3 \times 3 \times 3 \times 3}$
Here, the prime factor 3 does not appear in a group of three.
For getting a perfect cube, we multiply by one more 3 .
$243 \times 3=\underline{3 \times 3 \times 3 \times 3 \times 3 \times 3}$
$=729$ which is a perfect cube.
The smallest natural number by which 243 should be multiplied to make a perfect cube is 3 .
(ii) 256

ANS:

Here,
$256=\underline{2 \times 2 \times 2} \times \underline{2 \times 2 \times 2 \times 2 \times 2}$
The prime factor 2 does not appear in a group of there.
For getting a perfect cube, we multiply by one more 2 .
$256 \times 2=\underline{2 \times 2 \times 2} \times \underline{2 \times 2 \times 2 \times 2 \times 2 \times 2}$
$=512$ which is a perfect cube .
The smallest natural number by which 256 should be multiplied to make perfect cube is 2 .
(iii) 72

ANS:

$72=\mathbf{2} \times \mathbf{2} \times 2 \times 3 \times 3$

Here,
The prime factor 3 does not appear in a group of three.
For getting a perfect cube, we multiply by one more 3 .
$72 \times 3=\underline{2 \times 2 \times 2} \times \underline{3 \times 3 \times 3}$
$=216$ which is a perfect cube.
The smallest natural number by which 72 should be multiplied to make a perfect cube is 3 .
(iv) 675

ANS:

$675=\underline{3 \times 3 \times 3 \times 5 \times 5}$
Here,
The prime factor 5 does not appear in a group of three.
For getting a perfect cube, we multiply by one more 5 .
$675 \times 5=\underline{3 \times 3 \times 3 \times 5 \times 5 \times 5}$
$=3375$ which is a perfect cube .
The smallest natural number by which 675 should be multiplied to make a perfect cube is 5 .
(v) 100

ANS:

$100=5 \times 5 \times 2 \times 2$
Here both the prime factor does not form a group of three.
For getting a perfect cube, we multiply by 5 and 2
Then, $100 \times 5 \times 2=\underline{5 \times 5 \times 5 \times 2 \times 2 \times 2}$
$=1000$ which is a perfect cube .
The smallest natural number by which 100 should be multiplied to make a perfect cube is 5×2
(3) Find the smallest number by which each of the following number must be divided to obtain a perfect cube.
(i) 81

ANS:

$81=\underline{3 \times 3 \times 3 \times 3}$
Factor 3 does not form a group of three.
If we divide 81 by 3 , then the prime factorization of the quotient will not contain 3 .
$81 \div 3=3 \times 3 \times 3$
$=27=3^{3}$ is perfect cube .
The smallest number by which 81 should be divided to make it perfect cube is 3 .
(ii) 128

ANS:

$128=\underline{2 \times 2 \times 2 \times 2 \times 2 \times 2 \times 2}$
Factor 2 does not form a group of three,
if we divide 128 by 2 , then the prime factorization of the quotients will not contain 2 .
$128 \div 2=\underline{2 \times 2 \times 2 \times 2 \times 2 \times 2}$
$=64=4^{3}$ is perfect cube .
The smallest number by which 128 should be divided to make it perfect cube is 2 .
(iii) 135

ANS:

$135=\underline{3 \times 3 \times 3 \times 5}$
Factor 5 does not form a group of three

If we divide 135 by 5 , then the prime factorization of the quotient will not contain 5 .
$135 \div 5=3 \times 3 \times 3$
$=27=3^{3}$ is perfect cube.
The smallest number by which 135 should be divided to make it perfect cube is 5 .
(iv) 192

ANS:

$192=\underline{2 \times 2 \times 2} \times \underline{2 \times 2 \times 2} \times 3$
Factor 3 does not form a group of there
If we divide 192 by 3 then the prime factorization of the quotients will not contain 3 .
$192 \div 3=\underline{2 \times 2 \times 2} \times \underline{2 \times 2 \times 2}$
$=64=4^{3}$ is perfect cube .
The smallest number by which 192 should be divided to make it perfect cube is 3 .
(v) 704

ANS:

$704=\underline{2 \times 2 \times 2} \times \underline{2 \times 2 \times 2} \times 11$
Factor 11 does not form a group of three
If we divide 704 by 11 then the prime factorization of the quotient will not contain 11 .
$704 \div 11=\underline{2 \times 2 \times 2} \times \underline{2 \times 2 \times 2}$
$=64=4^{3}$ is perfect cube .
The smallest number by which 704 should be divided to make it perfect cube is 11.
(4) Parikshit makes a cuboid of plasticine of sides $5 \mathrm{~cm}, 2 \mathrm{~cm}, 5 \mathrm{~cm}$, how many such cuboids will he need to form a cube?

ANS:
Given that,
Parikshit have plasticine of sides $5 \mathrm{~cm}, 2 \mathrm{~cm}$ and 5 cm
We know,
Number of cuboids required $=$ Volume of cube $/$ Volume of cuboid
Now, Volume of cuboid $=$ length x breadth x height
Volume of cuboid $=5 \times 5 \times 2 \mathrm{~cm}^{3}$
To make the volume of cuboid as a cube number we need to multiply it by $(5 \times 2 \times 2)$
Number of cuboids required $=5^{\mathbf{3}} \times 2^{3} / 5^{\mathbf{2}} \times 2$
Number of cuboids required $=\mathbf{2 0}$

Exercise 1.2

(1) Find the cube root of each of the following numbers by prime factories method.
(i) 64

ANS:

By prime factor method,

$64=\underline{2 \times 2 \times 2 \times \underline{2 \times 2 \times 2}}$
We make group of 3 factor.
$=2^{3} \times 2^{3}$
$=(2 \times 2)^{3}$
The cube root of 64 is 4
(ii) 512

ANS:
By prime factor method

2	512
2	256
2	128
2	64
2	32
2	16
2	8
2	4
2	2

$$
512=\underline{2 \times 2 \times 2} \times \underline{2 \times 2 \times 2} \times \underline{2 \times 2 \times 2}
$$

We make group of 3 factor.
$=2^{3} \times 4^{3}$
$=(2 \times 2 \times 2)^{3}$
The cube root of 512 is 8 .
(iii) 10648

ANS:
By prime factor method

2	10648
2	5324
2	2662
11	1331
11	121
11	11
	1

We make group of 3 factor.
$10648=\underline{2 \times 2 \times 2 \times 11 \times 11 \times 11}$
$=2^{3} \times 11^{3}$
$=(2 \times 11)^{3}$
The cube root of 10648 is 22
(iv) 27000

ANS:
By prime factor method,

We make group of 3 factor.
$27000=\underline{3 \times 3 \times 3 \times 10 \times 10 \times 10}$
$=3^{3} \times 10^{3}$
$=(3 \times 10)^{3}$
The cube root of 27000 is 30 .
(v) 15625

ANS:
By prime factor method,

5	15625
5	3125
5	625
5	125
5	25
5	5
	1

We make group of 3 factor.
$15625=\underline{5 \times 5 \times 5 \times 5 \times 5 \times 5}$
$=5^{3} \times 5^{3}$
$=(5 \mathrm{x} 5) 3$
The cube root of 15625 is 25 .
(vi) 13824

ANS:
By prime factor method

2	13824
2	6912
2	3456
2	1728
2	864
2	432
2	216
2	108
2	54
3	27
3	9
3	3
	1

We make group of 3 factor.
$13824=\underline{2 \times 2 \times 3 \times 3 \times 3}$
$=2^{3} \times 2^{3} \times 2^{3} \times 3^{3}$
$=(2 \times 2 \times 2 \times 3)^{3}$
The cube root of 13824 is 24 .
(vii) 110592

ANS:
By prime factorization method,

2	110592
2	55296
2	27648

We make group of 3 factor.
$110592=\underline{2 \times 2 \times 2} \times \underline{2} \times 2 \times \underline{3 \times 3 \times 3}$
$=2^{3} \times 2^{3} \times 2^{3} \times 2^{3} \times 3^{3}$
$=(2 \times 2 \times 2 \times 2 \times 3)^{3}$
The cube root of 110592 is 48.
(viii) 46656

ANS:
By prime factorization method

2	46656
2	23328
2	11664
2	5832
2	2916
2	1458
3	729
3	243
3	81
3	27
3	9
3	3
	1

We make group of 3 factor.
$46656=\underline{2 \times 2 \times 2} \times \underline{2 \times 2 \times 2 \times 3 \times 3 \times 3 \times \underline{3 \times 3 \times 3}}$
$=2^{3} \times 2^{3} \times 3^{3} \times 3^{3}$
$=(2 \times 2 \times 3 \times 3)^{3}$
The cube root of 46656 is 36 .
(ix) 175616

ANS:
By prime factorization method

We make group of 3 factor.
$175616=\underline{2 \times 2 \times 7 \times 7 \times 7}$
$175616=2^{3} \times 2^{3} \times 2^{3} \times 7^{3}$
$=(2 \times 2 \times 2 \times 7)^{3}$
The cube root of 175616 is 56.
(x) 91125

ANS:
By prime factorization method,

5	91125
5	18225
5	3645
3	729
3	243
3	81
3	27
3	9
3	3

We make group of 3 factor.
$91125=\underline{5 \times 5 \times 5 \times 3 \times 3 \times 3 \times 3 \times 3 \times 3}$
$=5^{3} \times 3^{3} \times 3^{3}$
$=(5 \times 3 \times 3)^{3}$
The cube root of 91125 is 45.

(2) State true or false

(i) Cube of any odd number is even.

ANS:False.
(ii) A perfect cube does not end with two zero.

ANS:True.
(iii) If square of a number end with 5 , then its cube end with 25 .

ANS:False.
(iv) There is no perfect cube which ends with 8 .

ANS:False.
(v) The cube of a two digit number may be three digit numbers. Answer: False.
(vi) The cube of a two digit number may have seven or more digits. ANS:False.
(vii) The cube of a single digit number may be a single digit number. ANS:True.

