RS Aggarwal Class 8 Math Sixth Chapter Operation on Algebric Expressions Exercise 6B Solution
EXERCISE 6B
Find each the following products:
(1) (5x + 7) × (3x + 4)
= (5x × 3x) + (7 × 3x) + (5x × 4) + (7 × 4)
= 15x2 + 21x + 20x + 28
= 15x2 + 41x + 28
(2) (4x + 9) × (x – 6)
= (4x × x) + (9 × x) – (4x × 6) – (9 × 6)
= 4x2 + 9x – 24x – 54
= 4x2 – 15x – 54
(3) (2x + 5) × (4x – 3)
= (2x × 4x) + (5 × 4x) – (2x × 3) – (5 × 3)
= 8x2 + 20x – 6x – 15
= 8x2 + 14x – 15
(4) (3y – 8) × (2m – 3n)
= (3y × 2m) – (8 × 2m) – (3y × 3n) + (8 × 3n)
= 6ym – 16m – 9yn + 24n
(5) (7x + 2y) × (x + 4y)
= (7x × x) + (2y × x) + (7x × 4y) + (2y × 4y)
= 7x2 + 2xy + 28xy + 8y2
= 7x2 + 30xy + 8y2
(6) (9x + 5y) × (4x × 3y)
= (9x × 4x) + (5y × 4x) + (9x × 3y) + (5y × 3y)
= 36x2 + 20xy + 27xy + 15y2
(7) (3m – 4n) × (2m – 3n)
= (3m × 2m) – (4n × 2m) – (3m × 3n) + (4n × 3n)
= 6m2 – 8mn – 9mn + 12n2
= 6m2 – 17mn + 12n2
(8) (x2 – a2) × (x – a)
= (x2 × x) – (a2 × x) – (x2 × a) + (a2 × a)
= x3 + a2x – ax2 + a3
(9) (x2 – y2) × (x + 2y)
= (x2 × x) – (y2 × x) + (x2 × 2y) – (y2 × y)
= x3 – xy2 + 2x2y – y3
(10) (3p2 + q2) × (2p2 – 3q2)
= (3p2 × 2p2) + (q2 × 2p2) – (3p2 × 3q2) – (q2 × 3q2)
= 6p4 + 2p2q2 – 9p2q2 – 3q4
= 6p4 – 7p2q2 – 3q4
(11) (2x2 – 5y2) × (x2 + 3y2)
= (2x2 × x2) – (5y2 × x2) + (2x2 × 3y2) – (5y2 × 3y2)
= 2x4 – 5x2y2 + 6x2y2 – 15y4
= 2x4 + x2y2 – 15y4
(12) (x3 – y3) × (x2 + y2)
= (x3 × x2) – (y3 × x2) + (x3 × y2) – (y3 × y2)
= x5 – x2y3 + x3y2 – y5
(13) (x4 + y4) × (x2 – y2)
= (x4 × x2) + (y4 × x2) – (x4 × y2) – (y4 × y2)
= x6 + x2y4 – x4y2 – y6
Find each of the following products:
(15) (x2 – 3x + 7) × (2x + 3)
= (x2 × 2x) – (3x × 2x) + (7 × 2x) + (x2 × 3) – (3x × 3) + (7 × 3)
= 2x3 – 6x2 + 14x + 3x2 – 9x + 21
= 2x3 – 3x2 + 5x + 21
(16) (3x2 + 5x – 9) × (3x – 5)
= (3x2 × 3x) + (5x × 3x) – (9 × 3x) – (3x2 × 5) – (5x × 5) + (9 × 5)
= 9x3 + 15x2 – 27x – 15x2 – 25x + 45
= 9x3 – 52x + 45
(17) (x2 – xy + y2) × (x + y)
= (x2 × x) – (xy × x) + (y2 × x) + (x2 × y) – (xy × y) + (y2 × y)
= x3 – x2y + y2x + x2y – xy2 + y3
= (x3 + y3)
(18) (x2 + xy + y2) × (x – y)
= (x2 × x) + (xy × x) + (y2 × x) – (x2 × y) – (xy × y) – (y2 × y)
= x3 + x2y + xy2 – x2y – xy2 – y3
= (x3 – y3)
(19) (x3 – 2x2 + 5) × (4x – 1)
= (x3 × 4x) – (2x2 × 4x) + (5 × 4x) – x3 + 2x2 – 5
= 4x4 – 8x3 + 20x – x3 + 2x2 – 5
= 4x4 – 9x3 + 2x2 + 20x – 5
(20) (9x2 – x + 15) × (x2 – 3)
= (9x2 × x2) – (x × x2) + (15 × x2) – (9x2 × 3) + 3x – 45
= 9x4 – x3 + 15x2 – 27x2 + 3x – 45
= 9x4 – x3 – 12x2 + 3x – 45
(21) (x2 – 5x + 8) × (x2 + 2)
= (x2 × x2) – (5x × x2) + 8x2 + 2x2 – 10x + 16
= x4 – 5x3 + 10x2 – 10x + 16
(22) (x3 – 5x2 + 3x + 1) × (x2 – 3)
= (x3 × x2) – (5x2 × x2) + (3x × x2) + x2 – 3x3 + 15x2 – 9x – 3
= x5 – 5x4 + 3x3 + x2 – 3x3 + 15x2 – 9x – 3
= x5 – 5x4 + 16x2 – 9x – 3
(23) (3x + 2y – 4) × (x – y + 2)
= 3x2 + 2xy – 4x – 3xy – 2y2 + 4y + 6x + 4y – 8
= 3x2 – xy + 2x – 2y2 + 8y – 8
(24) (x2 – 5x + 8) × (x2 + 2x – 3)
= x4 – 5x3 + 8x2 + 2x3 – 10x2 + 16x – 3x2 + 15x – 24
= x4 – 3x3 – 5x2 + 31x – 24
(25) (2x2 + 3x – 7) × (3x2 – 5x + 4)
= 6x4 + 9x3 – 21x2 – 10x3 – 15x2 + 35x + 8x2 + 12x – 28
= 6x4 – x3 – 28x2 + 47x – 28
(26) (9x2 – x + 15) × (x2 – x – 1)
= 9x4 – x3 + 15x2 – 9x3 + x2 – 15x – 9x2 + x – 15
= 9x4 – 10x3 + 7x2 – 14x – 15