**New Learning Composite Mathematics SK Gupta Anubhuti Gangal Class 8 Algebraic Expressions Self Practice 5C Solution**

**(1) Subtract**

(a) 2x from 7x

(b) -5a from -2a

(c) 3b^{2} from -5b^{2}

(d) -2xy from 0

(e) -8cd from 8cd

(f) 3(x + y) from 4(x + y)

**(2) Subtract the lower expression from the upper expression.**

(a) (7a + 5) – (2a + 1)

(b) (9x^{2} + 3y^{2}) – (5x^{2} + y^{2})

(c) (5ab – 7bc) – (2ab + bc)

(d) (9x^{2}y – 11) – (-2x^{2}y – 5)

(e) (2m^{3} – 9n^{2}) – (4m^{3} – 11n^{2})

(f) (4x^{2}y – 5xy^{2}) – (4x^{2}y – 5xy^{2})

**Solution Number 1 & 2:**

**(3) Arrange the following in columns and subtract.**

(a) 7p + 2q + 5c from 9p + 4q + 7c

(b) 3x^{2} – 8xy – 9y^{2} from 3x^{2} – 8xy – 9y^{2}

(c) 8x^{2} – 9x + 5 from 4x^{3} – 3x^{2} + 7x + 11

(d) -2p^{3} + 7p^{2} – 20 + 3p from 0

(e) 4ax^{2} + 7bx – 9t + 6 from 8ax^{2} – 2bx + 10t -4

**(4) Subtract the following without writing in vertical form.**

(a) 2x + 3y from 7x + 9y

(b) -2x – y from 2x + y

(c) – 5m^{2} + 4mn – n^{2} from 2m^{2} + 8mn + 3n^{2}

(d) – 2p^{3} + 4p^{2} – 7 – p from 16 – 8p

(e) 4xy – 3x^{2}y + 7xy^{2} from 27 – 7xy^{2} + 11xy

(f) The sum of x^{2} – 2xy + y^{2} and x^{2} + 3xy + y^{2} from x^{2} – 6xy + 4y^{2}

(g) The sum of 9b^{2} – 3c^{2} and 2b^{2} + bc – 2c^{2} from the sum of 2b^{2} – 2bc – c^{2} and c^{2} + 2bc – b^{2}

**SOLUTION Number 3 & 4:**

**(5) Simplify:**

(a) 3x^{2} – 5x + 7 – 5x^{2} – 11 + 8x + 20 + 9x^{2} – 6x

(b) 5x^{3} – 8 + 7x^{2}y – 7xy + 10xy^{2} + 11 – 2x^{3} – 5x^{2}y + 9xy – 6xy^{2}

**(6) The area of a square4x ^{2} – 2xy – 6y^{2} square units. A triangle inside has an area of -5xy + 4y^{2} – 3x^{2} square units. Find the area of the shaded region.**

**Solution Number 5 & 6:**