Maharashtra Board Class 11 Maths Solution Chapter 2 – Trigonometry 1
Balbharati Maharashtra Board Class 11 Maths Solution Chapter 2: Trigonometry 1. Marathi or English Medium Students of Class 11 get here Trigonometry 1 full Exercise Solution.
Std |
Maharashtra Class 11 |
Subject |
Maths Solution |
Chapter |
2 |
Chapter Name |
Trigonometry 1 |
Exercise 2.1
(1) Find the trigonometric functions of 0°, 30°, 45°, 60°, 150°, 180°, 210°, 300°, 330°, −30°, −45°, −60°, −90°, −120°, −225°, −240°, −270°, −315°
Solution:
0°: Sin0° = 0, cos0° = 1, tan0° = 0, cosec0° = undefined, sec 0° = 1, cot0° = undefined
30°: Sin 30° = ½, Cos 30° = √3/2, tan 30° = 1/√3, cosec 30° = 2, sec 30° = 2/√3, cot 30° = √3
45°: sin 45° = 1/√2, cos45° = 1/√2, tan45° = 1, cosec 45° = √2, sec 45° = √2, cot 45° = 1
60°: Sin60° = √3/2, cos60° = 1/2, tan60° = √3, cosec60° = 2/√3, sec60° = 2, cot60° = 1/√3
150°: sin150° = sin (180° – 30°) = sin 30° = 1/2
cos150° = cos (180° – 30°) = – cos30° = – √3/2
tan150° = sin150°/cos150° = (1/2)/(- √3/2) = -1/√3
cosec150° = 2
sec150° = -2/√3
cot150° = – √3
180° : sin180° = 0, cos180° = cosec180° = undefined, sec180° = -1, cot180° = undefined, tan180° = 0
210°: sin210° = sin (180° + 30° = sin30° = -1/2
cos210° = (180° + 30°) = -cos30° = -√3/2
tan210° = sin210°/cos210° = (-1/2)/(-√3/2) = 1/√3
cosec210° = -2
sec210° = -2√3
cot210° = √3
300°: sin300° = sin (360° – 60°) = -sin60° = -√3/2
cos300° = cos (360° – 60°) = cos60° = 1/2
tan300° = sin°300°/cos300° = (-√3/2)/(1/2) = -√3
cosec300° = -2/√3
sec300° = 2
cot300° = -1/√3
330°: sin330° = sin (360° – 30°) = -sin30° = -1/2
cos330° = cos (360° – 30°) = cos30° = √3/2
tan330° = sin330°/cos330° = (-1/2)/(-√3/2) = -1/√3
cosec330° = -2
sec330° = 2/√3
cot330° = -√3
-30° = sin (-30°) = -sin30° = -1/2
cos (-30°) = cos30° = √3/2
tan (-30°) = sin (-30°)/cos (-30°) = (-1/2)/√3/2 = -1/√3
cosec (-30°) = -2
sec (-30°) = 2/√3
cot (-30°) = -√3
-45°: sin (-45°) = -sin45° = -1/√2
cos (-45°) = cos45° = 1/√2
tan (-45°) = 1
cosec (-45°) = – √2
sec (-45°) = √2
cot (-45°) = -1
-60°: sin (-60°) = -sin60° = – √3/2
cos (-60°) = cos60° = 1/2
tan (-60°) = (-√3/2)/(1/2) = √3
cosec (-60°) = -2/√3
sec (-60°) = 2
cot (-60°) = – 1/√3
-90° : sin (-90°) = -sin90° = -1
cos (-90°) = cos90° = 0
tan (-90°) = sin(-90°)/cos(-90°) = -1/0 = undefined
cosec (-90°) = -1
sec (-90°) = undefined
cot (-90°) = 0
-120°: sin (-120°) = -sin (180° – 60°) = -sin60° = -√3/2
cos (-120°) = cos (180° – 60°) = -cos60°= -1/2
tan (-120°) = sin (-120°)/cos (-120°) = -√3/2/(1/2) = √3
cosec (-120°) = -2/√3
sec (-120°) = -2
cot (-120°) = 1/√3
-225°: sin (-225°) = -sin (180° + 45°) = sin45° = 1/√2
cos (-255°) = cos (180° + 45°) = -cos45° = -1/√2
tan (-225°) = sin (-225°)/cos (-225°) = 1/√2/-1√2 = -1
cosec (-225°) = √2
sec (-225°) = -√2
cot (-225°) = -1
-240°: sin (-240°) = -sin (180° + 60°) = sin60° = √3/2
cos (-240°) = cos (180° + 60°) = -cos60° = -1/2
tan (-240°) = sin (-240°)/cos (-240°) = (√3/2)/(-1/2) = -√3
cosec (-240°) = 2/√3
sec (-240°) = -2
cot (-240°) = -1/√3
-270°: sin (-270°) = -sin (180° + 90°) = – sin90° = 1
cos (-270°) = -cos (180° + 90°) = -cos90° = 0
tan (-270°) = undefined
cosec (-270°) = 1
sec (-270°) = undefined
cot (-270°) = 0
-315°: sin (-315°) = -sin (360° – 45°) = sin 45° = 1/√3
cos (-315°) = cos (360° – 45°) = cos45° = 1/√2
tan (-315°) = sin (-315°)/cos (-315°) = (1/√2)/(1√2) = 1
cosec (-315°) = √2
sec (-315°) = √2
cot (-315°) = 1
(2) State the signs of
(i) tan380°
(ii) cot230°
(iii) sec468°
Solution:
(i) tan380°
380° = 360° + 20° which is in first quadrant
All trigonometric ratios are positive in first quadrant
∴ tan380° is positive
(ii) cot230°
230° = 180° + 50° which is in third quadrant
tan & cot are positive in third quadrant
∴ cot 230° is positive
(iii) sec468°
468° = 5×90° + 15° which is in second quadrant
cos & sec are negative in second quadrant
∴ sec468° in negative
(3) State the signs of cos 4c and cos4°. Which of these two functions is greater?
Solution:
4c = 4×180°/π = 4×180×7/22 = (229 1/11)°
4c lies in third quadrant
∴ cos 4c is negative
4° lies in first quadrant
∴ cos 4° is positive
∴ cos 4° is a greater function
(4) State the quadrant in which θ lies if
(i) sinθ < 0 and tanθ >0
(ii) cosθ < 0 and tanθ >0
Solution:
(i) sinθ < 0 and tanθ > 0
Third quadrant
(ii) cosθ < 0 and tan θ > 0
Third quadrant
(5) Evaluate each of the following:
(i) sin30° + cos 45° + tan180°
(ii) cosec45° + cot 45° + tan0°
(iii) sin30° × cos 45° × tan360°
Solution:
(i) sin30° + cos45° + tan180°
= 1/2 + 1/√2 = 0 = 2 + √2/2√2
(ii) cosec45° + cot45° + tan0°
= √2 + 1 + 0 = 1 + √2
(iii) sin30° × cos45° × tan360°
= 1/2 × 1/√2 × 0 = 0
(6) Find all trigonometric functions of angle in standard position whose terminal arm passes through point (3, −4).
Solution:
At point (3, -4), x = 3, y = -4
∴ r = √x2 + y2 = √32 + (-4)2 = √9+16 = 5
Sinθ = -4/5, cosθ = 3/5, tanθ = -4/3, cosec θ = -5/4, secθ = 5/3, cotθ = -3/4
(7) If cosθ =12/13, 0 < θ < π/2 , find the value of
sin2θ – cos2θ/2 sinθ cosθ, 1/tan2θ
Solution:
cosθ = 12/13
=) r = √x2 + y2
=) 132 = 122 + y2
=) y2 = 169 – 140
=) y = 5
sinθ = 5/13, tanθ = 5/12, catθ = 12/5
sin2θ – cos2θ/2sinθ cosθ = 1/2 [sinθ/cosθ – cosθ/sinθ]
= 1/2 [tanθ – cotθ]
= 1/2 [5/12 – 12/5]
= 1/2 [25-144/60]
= -1/2 [119/60] = – 119/120
1/tan2θ = 1/(25/144) = 144/25
(8) Using tables evaluate the following:
(i) 4cot45° − sec2 60° + sin 30°
(ii) cos2 0 + cos2 π/6 + cos2 π/3 + cos2 π/2
Solution:
(i) 4cot 45° – sec2 60° + sin 30°
= 4×1 – 4 + 1/2
= 1/2
(ii) cos2 0 + cos2 π/6 + cos2 π/3 + cos2 π/2
= 1 + 3/4 + 1/4 + 0
= 2
(9) Find the other trigonometric functions if
(i) If cosθ = 3/5 − and 180° < θ < 2700.
(ii) If secA = − 25/7 and A lies in the second quadrant.
(iii) If cot x = 3/4, x lies in the third quadrant.
(iv) tan x = −5/12, x lies in the fourth quadrant.
Solution:
(i) cosθ = -3/5
∴ y2 = 25-9 = 16 => y = 4
sinθ = -4/5, tanθ = 4/5, cosecθ = -5/4 secθ = -5/3, cotθ = 3/4
(ii) sec A = -25/7
∴ y2 = 625 – 49 = 576 => y = 24
sin A = 24/25, cosec A = 25/24, tan A = -24/7, cot A = -7/24
CosA = -7/25
(iii) cot x = 3/4
∴ x = √9+16 = 5
∴ sin x = -4/5, cos x = -3/5, tan x = 4/3, cosec x = -5/4, sec x = -5/3
(iv) tan x = -5/12
∴ r = √25 + 144 = 13
∴ sin x = – 5/13, cos x = 12/13 cosec x = -13/5, sec x = 13/12, cot x = -12/5
Ex – 2.2
(1) If 2 sinA = 1 = √2 cosB and π/2 < A < π, 3π/2 <B <2π, then find the value of
tanA + tanB/cosA – cosB
Solution:
2 sin A = 1 = √2 cosB
∵ sinA = 1/2, cosB = 1/√2
sinA = 1/2, A = 30°
cosA = √3/2, tanA = 1/√3
∵ cosB = 1/√2, B = 45°
∴ SinB = 1/√2, tan B = 1
∴ tanA + tanB/cosA – cosB
(2) If sinA/3 = sinB/4 = 1/5 and A, B are angles in the second quadrant then prove that 4cosA + 3cosB = -5.
Solution:
SinA/3 = sinB/4 = 1/5
∴ sinA = 3/5, sinB = 4/5
For A, x = √25 – 9 = 4
For B, x = √25 – 16 = 3
∴ cosA = -4/5, cosB = -3/5 (∵ A & B are in 2nd quadrant)
∴ 4cosA + 3cosB = 4 × -4/5 + 3 × -3/5 = -16/5 -9/5 = -25/5 = -5
(3) If tanθ = 1/2, evaluate 2sinθ + 3cosθ/4cosθ + 3sinθ
Solution:
(4) Eliminate θ from the following:
(i) x = 3secθ , y = 4tanθ
(ii) x = 6cosecθ , y = 8cotθ
(iii) x = 4cosθ − 5sinθ, y = 4sinθ + 5cosθ
(iv) x = 5 + 6cosecθ, y = 3 + 8cotθ
(v) 2x = 3 − 4tanθ, 3y = 5 + 3secθ
Solution:
(i) x = 3 secθ, y = 4tanθ
∴ secθ = x/3, tanθ = y/4
∴ 1 + tan2θ = sec2θ
= 1 + y2/1 = x2/9
= x2/9 – y2/16 = 1
(ii) x = 6 cosecθ, y = 8 cotθ
∴ cosecθ = x/6, cotθ = y/8
∴ cosec2θ = cot2 θ + 1
=) x2/36 = y2/64 + 1
=) x2/36 – y2/64 = 1
(iii) x = 4cosθ – 5sinθ, y = 4sinθ + 5cosθ
x2 + y2 = (4cosθ – 5sinθ)2 + (4sinθ + 5cosθ)2
= 16cos2θ + 25 sin2θ – 40cosθ sinθ + 16sin2θ + 25cos2θ + 40sinθ cosθ
= 16 (sin2θ + cos2θ) + 25 (sin2θ + cos2θ)
= 16 + 25
= 41
(iv) x = 5 + 6 cosecθ, y = 3 + 8 cotθ
∴ cosecθ = x-5/6 cotθ = y-3/8
cosec2θ = cot2θ + 1
= (x-5/6)2 – (y-3/8)2 = 1
(v) 2x = 3 – 4 tanθ, 3y = 5 + 3 secθ
tanθ = 3 – 2x/4, secθ = 3y-5/3
∴ 1 + tan2 θ = sec2θ
= (3y – 5/3)2 – (3- 2x/4)2 = 1
(5) If 2sin2θ + 3sinθ = 0, find the permissible values of cosθ.
Solution:
2 sin2 θ + 3 sinθ = 0
= sinθ (2sinθ + 3) = 0
∴ sinθ = 0 or sinθ = -3/2
∵ -1 ≤ sinθ ≤ 1
∴ sinθ = 0
∴ cosθ = √1 – sin2θ
= cosθ = ±1
(6) If 2cos2 θ −11cosθ + 5 = 0 then find possible values of cosθ.
Solution:
2cos2 θ – 11cosθ + 5 = 0
∴ cosθ = 5 or cosθ = ½
∵ -1 ≤ cosθ ≤ 1
∴ cosθ = 1/2
(7) Find the acute angle θ such that 2cos2 θ = 3sinθ
Solution:
2cos2θ = 3sin θ
= 2 (1 – sin2θ) = 3sin θ
= 2 sin2θ + 3sinθ – 2 = 0
∴ sin θ = – 3 ± √9+16/4
= -3±5/4
∴ sin θ = ½ or sin θ = -2
∵ -1 ≤ sinθ ≤ 1
∴ sin θ = 1/2
∴ θ = 30°
(8) Find the acute angle θ such that 5tan2 θ + 3 = 9secθ
Solution:
5tan2 θ + 3 = 9 sec θ
= 5 (sec2 θ – 1) + 3 = 9 sec θ
= 5 sec2 θ – 9 sec θ – 2 = 0
∴ sec θ = 9 ± √81+40/10
= 9±11/10
∴ sec θ = 2 or sec θ = -1/5
∵ sec θ ≥ 1 or sec θ ≤ -1
∴ sec θ = 2 => cos θ = 1/2
∴ θ = 60°
(9) Find sinθ such that 3cosθ + 4sinθ = 4
Solution:
3cosθ + 4sinθ = 4
=> 3cosθ = 4 (1 – sinθ)
=> 9cos2θ = 16 (1 – sinθ)2
=> 9 (1 – sin2θ) = 16 (1 – sinθ)2
=> 9 – 9 sin2θ = 16 + 16 sin2θ – 32sinθ
= 25sin2θ – 32sinθ + 7 = 0
∴ sinθ = (32 ± √1024 – 700) /50 = 32±18/50
∴ sinθ = 1 or sinθ = 14/50 = 7/25
(10) If cosecθ + cotθ = 5, then evaluate secθ.
Solution:
Cosecθ + cotθ = 5
=> 1/sinθ + cosθ/sinθ = 5
=> 1 + cosθ = 5 sinθ
=> (1 + cosθ)2 = (5sinθ)2
= 1 + cos2θ + 2secθ – 25 sin2θ
= 1 + cos2θ+ 2cosθ = 25 – 25 cos2θ
= 26cos2θ + 2cosθ – 24 = 0
∴ cos θ = – 2 ± √4 + 2496/52
= -2±√2500/52
= -2 ± 50/52
∴ cosθ = -1 or cos θ = 12/13
∴ secθ = 13/12 (∵ if cosθ = -1, cosecθ & cotθ are undefined)
(11) If cotθ = 3/4 and π < θ < 3π/4 then find the value of 4cosecθ + 5cosθ.
Solution:
Cotθ = 3/4
∵ cosec2θ = 1 + cot2θ = 1 + 9/16 = 25/16
=> cosecθ = ± 5/4 => cosecθ = -5/4 (∵ θ is 3rd quadrant)
=> sinθ = -4/5
∴ cosθ = √1 – sin2θ = √1 – 16/25 = ± 3/5 => cosθ = -3/5
= 4 × -5/4 + 5 × -3/5 = -5 -3 = -8
(12) Find the Cartesian co-ordinates of points whose polar coordinates are:
(i) (3, 90°)
(ii) (1, 180°)
Solution:
Given, r = 3, θ = 90°
∴ r = √x2 + y2 and tanθ = y/x
∴ x2 + y2 = 9 and tan 90° = y/x
∴ y/x = 1/0
=> x = 0
∴ y = √9 – x2
= 3
∴ The Cartesian coordinates are: (0, 3)
(ii) Given, r = 1, θ = 180°
∴ r = √x2 + y2
=> x2 + y2 = 1
=> y = 0
∴ x2 = √1 – 10 = ±1 = -1 (∵ x is negative in 2nd & 3rd quadrant)
∴ Cartesian coordinates are: (-1, 0)
(13) Find the polar co-ordinates of points whose Cartesian co-ordinates are:
(i) (5, 5)
(ii) (1, √3)
(iii) (-1, -1)
(iv) (-√3, 1)
Solution:
(i) (5, 5)
∴ r = √52 + 52 = 5√2 and tanθ = 5/4 = 1 => θ = 45°
∴ Polar coordinates are: (5√2, 45°)
(ii) (1, √3)
∴ r = √12 + (√3)2 = 2
tanθ = √3/1 = θ = 60°
∴ Polar coordinates are: (2, 60°)
(iii) (-1, -1)
r = √(-1)2 + (-1)2 = √2
tanθ = -1/-1 = 1
∴ θ = 45° or 225° (∵ (-1, -1) is in 3rd quadrant)
∴ Polar coordinates are: (√2, 225°)
(iv) (-√3, 1)
r = √3+1 = 2
tan θ = -1/√3
∴ θ = 150°
∴ Polar coordinates are: (2, 150°)
(14) Find the value of
(i) sin 19πc/3
(ii) cos 1140°
(iii) cot 25πc/3
Solution:
(i) sin 19πc/3
= sin (6π + π/3)
= sin π/3 = √3/2
(ii) cos 1140°
= cos (12×90° + 60°
= cos60° = 1/2
(iii) cot 25πc/3
= cot (8π + π/3)
= cot π/3 = 1/√3
(15) Prove the following identities:
(i) (1 + tan2 A) + (1 + 1/tan2A) = 1/sin2 A-sin4 A
(ii) (cos2 A – 1) (cot2 + A + 1) = – 1
(iii) (sinθ + secθ)2 + (cosθ + cosecθ)2 = (1 + cosecθ secθ)2
(iv) (1 + cotθ – cosecθ secθ) = 2
(v) tan3 θ/1 + tan2 θ + cot3 θ/1 + cot2 θ
= secθ cosecθ – 2sinθ cosθ
(vi) 1/secθ+tanθ – 1/cosθ = 1/cosθ – 1/secθ – tanθ
(vii) sinθ/1 + cosθ + 1 + cosθ/sinθ = 2cosecθ
(viii) tanθ/secθ – 1 = secθ + 1/tanθ
(iv) cotθ/cosecθ – 1 = cosecθ + 1/cotθ
(x) (secA + cosA) (secA – cosA) = tan2 A + sin2A
(xi) 1 + 3cosec2θ, cot2θ + cot6θ = cosec6θ
(xii) 1-secθ + tanθ/1 + secθ – tanθ = secθ + tanθ – 1/secθ + tanθ + 1
Solution:
(ii) (cos2A – 1) (cot2A + 1)
= (Cos2A – 1) (cos2A/sin2A + 1)
= (cos2A – 1) (cos2A + sin2A/sin2A)
= cos2A – 1/sin2A
= -sin2A/sin2A
= -1 = RHS
(iii) (sinθ + secθ)2 + (cosθ + cosecθ)2
= sin2θ + sec2θ + 2sinθ secθ + cos2θ + cosec2θ + 2cosθ cosecθ
= (sin2θ + cos2θ) + (1/sin2θ + 1/cos2θ) + 2 (sinθ/cosθ + cosθ/sinθ)
= 1 + 1/sin2θ cos2θ + 2/sinθ cosθ
= 1 + cosec2θ sec2θ + 2coseθ secθ
= (1 + cosecθ secθ)2
= RHS
(x) (SecA + cosA) (secA – cosA)
= sec2A – cos2A
= 1 + tan2A – 1 + sin2A
= tan2A + sin2A = RHS
(xi) 1 + 3 cosec2θ cot2θ + cot6θ
= 1 + 3 cosec2θ (cosec2θ – 1) + (cosec2θ – 1)3
= 1 + 3 cosec4θ – 3cosec2θ + (cosec6θ – 1 + 3cosec4θ + 3cosec2θ)
= cosec6θ = RHS
MISCELLANEOUS – 2
(I) select the correct option from the given alternatives.
(1) The value of the expression cos1°. cos2°. cos3°. …….. cos179° =
(A) -1
(B) 0
(C) 1/√2
(D) 1
Solution:
(1) (i) Cos1°. cos2°. ……. cos179°
∵ Cos 90° = 0
∴ Cos1°. cos2°. ………. cos179° = 0
A: (B) 0
(2) tanA/1+secA + 1+secA/tanA is equal to
(A) 2cosec A
(B) 2sec A
(C) 2sin A
(D) 2cos A
Solution:
TanA/1+secA + 1+secA/tanA = sinA/cosA+1 + cosA+1/sinA
= 2cosA + 1 + 1/sinA (cosA + 1) = 2(cosA + 1)/sinA (cosA + 1) = 2cosecA
A: (A) 2 cosecA.
(3) If α is a root of 25cos2 θ + 5cosθ – 12 = 0, π/2 <a <π then sin 2 α is equal to.
(A) – 24/25
(B) – 13/18
(C) 13/18
(D) 24/25
Solution:
25cos2 θ + 5cosθ – 12 = 0
cosθ = -5 ± √25+100/50 = -5±35/50
∴ cosθ = 3/5 or cosθ = -4/5
∵ π/2 <∝ <π
cos∝ = -4/5
∴ sin ∝ = √1 – cos2∝ = 3/5
∴ sin 2 ∝ = sin ∝ cos ∝
= 2 × 3/5 × (-4/5)
= -24/25
A: (A) -24/25
(4) If θ = 60°, then 1+tan2 θ/2tan θ = is equal to
(A) √3/2
(B) 2/√3
(C) 1/√3
(D) √3
Solution:
1 + tan2 θ/2tanθ = 1+tan260°/2tan60° = 1+3/2√3 = 2/√3
A: (B) 2/√3
(5) If secθ = m and tanθ = n, then 1/m {(m+ n) + 1/(m + n)} is equal to
(A) 2
(B) mn
(C) 2m
(D) 2n
(6) If cosecθ + cotθ = 5/2, then the value of tanθ is
(A) 14/25
(B) 20/21
(C) 21/20
(D) 15/16
Solution:
cosecθ + cotθ = 5/2 —– (i)
cosec2θ – cot2θ = 1
= (cosecθ + cotθ) (cosecθ – cotθ) = 1
= 5/2 (cosecθ – cotθ) = 1
= cosecθ – cotθ = 2/5 —— (2)
(1) – (2) => 2cotθ = 5/2 – 2/5 = 21/10
=> cotθ = 21/10
tanθ = 20/21
A: (B) 20/21
(7) 1 – sin2θ/1+cosθ + 1+cosθ/sinθ – sinθ/1-cosθ equals
(A) 0
(B) 1
(C) sinθ
(D) cosθ
Solution:
‘
(8) If cosecθ − cotθ = q, then the value of cot θ is
(A) 2q/1+q2
(B) 2q/1-q2
(C) 1-q2/2q
(D) 1+q2/2q
Solution:
cosecθ – cotθ = q —— (1)
cosec2θ – cot2θ = 1
= (cosecθ – cotθ) (cosecθ + cotθ) = 1
= q (cosecθ + cotθ) = 1
= cosecθ + cotθ = 1/q —— (2)
(2) —– (1) = 2cotθ =1/q – q
= cotθ = 1-q2/2q
A: (c) 1-q2/2q
(9) The cotangent of the angles π/3, π/4 and π/6 are in
(A) A.P.
(B) G.P.
(C) H.P.
(D) Not in progression
Solution:
cot π/3 = 1/√3, cot π/4 = 1, cot π/6 = √3
Let, a = 1/√3, b = 1, c = √3
∴ b/a = √3 and c/b = √3
∴ a, b and c are in G.P.
(10) The value of tan1°.tan2°tan3°….. tan89° is equal to
(A) -1
(B) 1
(C) π/2
(D) 2
Solution:
tan1° tan2° ……. tan89°
= [tan1° tan2° …… tan44°] tan45° [tan (90° – 44°) ……. tan (90° – 1°)]
= [tan1° tan2° …… tan44°] 1 [cot44° …. cot1°)]
= 1
A: (B) 1
(II) Answer the following
(1) Find the trigonometric functions of: 90°, 120°, 225°, 240°, 270°, 315°, −120°, −150°, −180°, −210°, −300°, −330°
Solution:
90°: sin 90° = 1
cos 90° = 0
tan 90° = undefined
cosec 90° = 1
sec 90° = undefined
cot 90° = 0
120°: sin 120° = sin (180° – 60°) = sin 60° = √3/2
cos 120° = cos (180° – 60°) = – cos 60° = – 1/2
tan 120° = – √3
cosec 120° = 2/√3
sec 120° = -2
cot 120° = 1/√3
225°: sin 225° = sin (180° + 45°) = -sin 45° = -1/√2
cos 225° = cos (180° + 45°) = -cos45° = -1/√2
tan 225° = 1 cot 225° = 1
cosec 225° = – √2
sec 225° = – √2
240°: sin 240° = sin (180° + 60°) = -sin60° = √3/2
cos 240°= cos (180° + 60°) = – cos 60° = – ½
tan 240° = √3 sec 240° = -2
cosec 240° = -2/√3 cot 240° = 1/√3
270°: sin 270° = sin (360° – 90°) = – sin 90° = -1
cos 270° = cos (360° – 90°) = – cos90° = 0
tan 270° = undefined sec 270° = undefined
cosec 270° = -1 cot 270 = 0
315°: sin 315° = sin (360° – 45°) = – sin45° = -1/√2
cos 315° = cos (360° – 45°) = cos 45° = 1/√2
tan 315° = -1 sec 315° = √2
cosec 315° = – √2 cot 315° = -1
-120°: sin (-120°) = – sin (180° – 60°) = – sin 60° = – √3/2
cos (-120°) = cos (180° – 60°) = – cos 60° = – ½
tan (-120°) = √3 sec (-120°) = -2
cosec (-120°) = -2/√3 cot (-120°) = 1/√3
-150°: sin (-150°) = – sin (180° – 30°) = – sin 30° = – 1/2
cos (-150°) = cos (180° – 30°) = – cos 30° = – √3/2
tan (-150°) = 1/√3 sec (-150°) = -2/√3
cosec (-150°) = -2 cot (-150°) = √3
-180°: sin (-180°) = – sin (180° – 0°) = 0
cos (-180°) = cos (180° – 0°) = – cos 0° = – 1
tan (-180°) = 0 sec (-180°) = -1
cosec (-180°) = undefined cot (-180°) = undefined
-210°: sin (-210°) = – sin (180° + 30°) = sin 30° = 1/2
cos (-210°) = cos (180° – 30°) = – cos 30° = – √3/2
tan (-210°) = – 1/√3 sec (-210°) = -2/√3
cosec (-210°) = 2 cot (-210°) = – √3
-300°: sin (-300°) = – sin (360° – 60°) = sin 60° = √3/2
cos (-300°) = cos (360° – 60°) = – cos 60° = – 1/2
tan (-300°) = √3 sec (-300°) = 2
cosec (-300°) = 2/√3 cot (-300°) = 1/√3
-330°: sin (-330°) = – sin (360° – 30°) = sin 30° = 1/2
cos (-330°) = cos (360° – 30°) = – cos 30° = √3/2
tan (-330°) = 1/√3 sec (-330°) = 2/√3
cosec (-330°) = 2 cot (-330°) = √3
(2) State the signs of
(i) cosec 520°
(ii) cot 1899°
(iii) sin 986°
Solution:
(i) Cosec 520°
520° = 3×180° – 20° lies in 2nd quadrant
∴ cosec 520° is positive
(ii) cot 1899°
1899° = 11×180° – 81° lies in 2nd quadrant
∴ cot 1899° is negative
(iii) Sin 986°
986° = 5×180° + 86° lies in 3rd quadrant
∴ Sin 986° is negative
(3) State the quadrant in which θ lies if
(i) tanθ < 0 and secθ >0
(ii) sinθ < 0 and cosθ <0
(iii) sinθ > 0 and tanθ <0
Solution:
(i) tanθ < 0 & secθ > 0
Fourth quadrant
(ii) sinθ < 0 & cosθ < 0
Third quadrant
(iii) sinθ > 0 & tanθ < 0
Second quadrant
(4) Which is greater sin (1856°) or sin (2006°)?
Solution:
Sin (1856°) = sin (10×180°+56°)
= sin 56° (Lies in 1st quadrant)
sin (2006°) = sin (11×180°×20°)
= -sin 20° (∵ It lies in 3rd quadrant)
∴ Sin (1856°) > sin (206°)
(5) Which of the following is positive? sin(−310°) or sin(310°)
Solution:
Sin (-310°) is positive because it lies in 1st quadrant
sin (310°) is negative because it lies in 4th quadrant
(6) Show that 1− 2sinθ cosθ ≥ 0 for all θ ∈ R
Solution:
1 – 2 sinθ cosθ = sin2θ + cos2θ – 2sinθ cosθ
= (sinθ – cosθ)2 ≥ 0, θ ∈ R
(7) Show that tan2 θ + cot2 θ ≥ 2 for all θ ∈ R
Solution:
tan2 θ + cot2 θ = tan2 θ + (1/tanθ)2
= (tanθ – 1/tanθ)2 + 2tanθ . 1/tanθ
= (tanθ – 1/tanθ)2 + 2 ≥ 2
(8) If sinθ = x2 – y2/x2 + y2 then find the values of cosθ, tanθ in terms of x and y.
Solution:
(9) If secθ = √2 and 3π/2 < θ < 2π then evaluate
Solution:
Secθ = √2
tanθ = √sec2θ – 1 = √2-1 = ± 1
∵ 3π/2 <θ <2π, tanθ = -1
cotθ = -1
∴ cosecθ = √cot2θ + 1 = ± √1+1 = ± √2
∴ cosecθ = – √2
∴ 1+tanθ+cosecθ/1+cotθ-cosecθ = 1-1- √2/1-1+√2 = -1
(10) Prove the following:
(i) sin2A cos2B + cos2A sin2B + cos2A cos2B + sin2A sin2B = 1
Solution:
sin2A cos2B + cos2A sin2B + cos2A cos2B + sin2A sin2B
sin2A (sin2B + cos2B + cos2B) + cos2A (sin2B + cos2B)
= sin2A + cos2A = 1 R.H.S
(ii) (1+cotθ+tanθ) (sinθ – cosθ)/sec3θ – cosec3θ)
= sin2θ cos2θ
Solution:
(iii) (tanθ + 1/cosθ)2 + (tanθ – 1/cosθ)2
= 2 (1+sin2θ/1-sin2θ)
Solution:
(tanθ + 1/cosθ)2 + (tanθ – 1/cosθ)2
= tan2θ + sec2θ + tan2θ + sec2θ + 2tanθ secθ – 2tanθ secθ
= 2 (tan2θ + sec2θ)
= 2 (sin2θ/cos2θ + 1/cos2θ)
= 2 (1 + sin2θ/1-sin2θ) = RHS
(iv) 2sec2θ – sec4θ – 2cosec2θ + cosec4θ = cot4θ – tan4θ
Solution:
2sec2θ – sec4θ – 2cosec2θ + cosec4θ
= 2 (1 + tan2θ) – (1 + tan2θ)2 – 2 (1 + cot2θ) + (1 + cot2θ)2
= 2 + 2tan2θ – (1 + tan4θ + 2tan2θ) – 2 – 2cot2θ + (1 + cot4θ + 2cot2θ)
= cot4θ + tan4θ = RHS
(v) sin4 θ + cos4 θ = 1 – 2 sin2 θ cos2 θ
Solution:
sin4 θ + cos4 θ
= (sin2θ + cos2θ)2 – 2sin2θ cos2θ
= 1 – 2sin2θ cos2θ = RHS
(vi) 2(sin6 θ + cos6 θ) – 3(sin4 θ + cos4 θ) + 1 = 0
Solution:
2 (sin2θ + cos6θ) – 3 (sin4θ + cos4θ) + 1
= 2 (sin2θ + cos4θ – sin2θ cos2θ) (sin2θ + cos2θ) – 3 {(sin2θ + cos2θ)2 – 2sin2θ cos2θ} + 1
= 2 (sin4 + cos4θ – 2sin2θ cos2θ) – 3 (1 – 2sin2θ cos2θ) + 1
= 2 (sin4θ + cos4θ) – 2sin2θ cos2θ – 3 + 6 sin2θ cos2θ + 1
= 2 (1 – 2sin2θ cos2θ) + 4sin2θ cos2θ – 2
= 2 – 4sin2θ cos2θ + 4sin2θ cos2θ – 2
= 0 = RHS
(vii) cos4 θ − sin4 θ +1= 2cos2 θ
Solution:
cos4θ – sin4θ + 1
= cos2θ + sin2θ + sin4θ + cos4θ
= cos2θ (1 + cos2θ) + sin2θ + sin4θ
= (1 – sin2θ) (2 – sin2θ) + sin2θ + sin4θ
= 2 – 3 sin2θ – sin4θ + sin2θ + sin4θ
= 2 (1 – sin2θ) = 2cos2θ = RHS
(viii) sin4θ +2sin2θ ·cos2θ = 1 − cos4θ
Solution:
sin4θ + 2sin2θ ·cos2θ
= sin4θ + 2sin2θ cos2θ + cos4θ – cos4θ
= (sin2θ + cos2θ)2 – cos4θ
= 1 – cos4θ = RHS
(ix) sin3θ + cos3θ/sinθ + cosθ + sin2θ – cos3θ/sinθ – cosθ = 2
Solution:
(x) tan2 θ − sin2 θ = sin4 θ sec2 θ
Solution:
tan2θ – sin2θ
= sin2θ/cos2θ – sin2θ
= sin2θ – sin2θ cos2θ/cos2θ
= sin2θ (1 – cos2θ)/cos2θ
= sin4θ sec2θ = RHS
(xi) (sinθ + cosecθ)2 + (cosθ + secθ)2 = tan2θ + cot2θ + 7
Solution:
(sinθ + cosecθ)2 + (cosθ + secθ)2
= sin2θ + 1/sin2θ + 2sinθ 1/sinθ + cos2θ + 1/cos2θ + 2cosθ 1/cosθ
= (sin2θ + cos2θ) + 2 + 2 + (cosec2θ + sec2θ)
= 5 + (1 + cot2θ + 1 + tan2θ)
= tan2θ + cot2θ + 7 = RHS
(xii) sin8θ − cos8θ = (sin2θ − cos2θ) (1 − 2 sin2θ cos2θ)
Solution:
= (sin4θ – cos4θ) (sin4θ + cos4θ)
= (sin2θ – cos2θ) (sin2θ + cos2θ) {(sin2θ + cos2θ)2 – 2sin2θ cos2θ}
= (sin2θ – cos2θ) (1 – 2sin2θ cos2) = RHS
(xiii) sin6A + cos6A = 1 − 3sin2A +3 sin4A
Solution:
sin6A + cos6A
= (sin2A + cos2A)3 – 3sin2A cos2A (sin2A + cos2A)
= 1 – 3 sin2A (1 – sin2A)
= 1 – 3sin2A (1 – sin2A)
= 1 – 3 sin2A + 3sin4A = RHS
(xiv) (1+ tanA·tanB)2 + (tanA−tanB)2 = sec2 A·sec2 B
Solution:
(1 + tanA tanB)2 + (TanA – tanB)2
= 1 + tan2A tan2B + 2tanA tanB + tan2A + tan2B – 2tanA tanB
= (1 + tan2B) (1 + tan2A)
= sec2A sec2B = RHS
(xv) 1 + cotθ + cosecθ/1 – cotθ + cosecθ = cosecθ + cotθ – 1/cotθ – cosecθ + 1
Solution:
1 + cotθ + cosecθ/1 – cotθ + cosecθ
cosec2θ – cot2θ = 1
= (cosecθ + cotθ) (cosecθ – cotθ) = 1
= cosecθ + cotθ/1 = 1/cosecθ – cotθ
= cosecθ + cotθ + 1/coecθ + cotθ – 1 = 1 + cosecθ – cotθ/1 – cosecθ + cotθ (By componendo & dividendo)
= cosecθ + cotθ + 1/1 – cotθ + cosecθ
= cosecθ + cotθ – 1/cotθ – cosecθ + 1
(xvi) tanθ + secθ – 1/tanθ + secθ + 1 = tanθ/secθ + 1
(xvii) cosecθ + cotθ – 1/cosecθ + cotθ + 1 = 1 – sinθ/cosθ
(xviii) Cosecθ + cotθ + 1/cotθ + cosecθ – 1 = cotθ/cosecθ – 1
Solution: